image_tile.py
21.8 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
# coding=utf-8
#author: 4N
#createtime: 2021/3/24
#email: nheweijun@sina.com
from app.util import *
import traceback
from osgeo import gdal
from osgeo.gdal import *
from numpy import ndarray
import numpy
from flask import Response
import io
import os
from PIL import Image
import time
import cv2
from app.modules.service.image.models import ImageService,Image
from app.models import db,TileScheme
from app.util.component.ApiTemplate import ApiTemplate
from app.util.component.SliceScheme import SliceScheme
from app.util.component.ParameterUtil import ParameterUtil
import json
from kazoo.client import KazooClient
from threading import Thread
from app.modules.service.image.util.ThriftConnect import ThriftConnect,ThriftPool
import gzip
import random
import copy
class Api(ApiTemplate):
api_name = "切片"
def __init__(self,guid,level, row, col):
super().__init__()
self.guid = guid
self.level = level
self.row = row
self.col = col
def process(self):
result = {}
parameter: dict = self.para
try:
if parameter.get("guid"):
self.guid = parameter.get("guid")
image_service_info, zoo, servers = self.cache_data()
# bands = [1, 2, 3]
# 转换参数
parameter = ParameterUtil.to_lower(parameter)
if parameter.get("tilematrix"):
if parameter.get("tilematrix").__contains__(":"):
self.level = int(parameter.get("tilematrix").split(":")[-1])
else:
self.level = int(parameter.get("tilematrix"))
if parameter.get("tilerow"):
self.row = int(parameter.get("tilerow"))
if parameter.get("tilecol"):
self.col = int(parameter.get("tilecol"))
image_type = parameter.get("format") if parameter.get("format") else "image/png"
quality = int(parameter.get("quality")) if parameter.get("quality") else 30
slice_para = image_service_info["scheme"]
extent = SliceScheme.get_polygon(slice_para, self.level, self.row, self.col)
height, width = 256,256
# 多线程获取分布式数据
intersect_image = [im for im in image_service_info["images"] if self.determin_intersect(json.loads(im.extent),extent)]
if len(intersect_image) > 1:
# 结果矩阵
pixel_array = numpy.zeros((height, width, 3), dtype=int) + 65536
thread_list = []
for image in intersect_image:
# 该影像的服务器,随机选取一个
image_servers = image.server.split(",")
image_servers = [ser for ser in image_servers if ser in servers]
if len(image_servers)>0:
indx = int(random.random() * len(image_servers))
image_server = image_servers[indx]
else:
image_server = "None"
bands = json.loads(image.band_view)
thread: MyThread = MyThread(self.get_data,
args=(image_server, image, extent, bands, height, width))
thread.start()
thread_list.append(thread)
for thread in thread_list:
thread.join()
data = thread.get_result()
# 掩膜在中央接口生成,合图
mask = numpy.zeros((height, width, 3), dtype=int)
mask_data = numpy.zeros((height, width, 3), dtype=int)
mask[data == 65536] = 1
mask[data != 65536] = 0
mask_data[data == 65536] = 0
mask_data[data != 65536] = 1
# # 掩膜计算
pixel_array = pixel_array * mask + data * mask_data
# opencv 颜色排序为GBR
d1 = copy.copy(pixel_array[:,:,0])
pixel_array[:, :, 0] = pixel_array[:,:,2]
pixel_array[:, :, 2] = d1
elif len(intersect_image) == 1:
# 该影像的服务器,随机选取一个
image = intersect_image[0]
image_servers = image.server.split(",")
#判断可用服务器
image_servers = [ser for ser in image_servers if ser in servers]
if len(image_servers) > 0:
indx = int(random.random() * len(image_servers))
image_server = image_servers[indx]
else:
image_server = "None"
# image_server = image_servers[0]
bands = json.loads(image.band_view)
pixel_array_t:numpy.ndarray = self.get_data(image_server, image, extent, bands, height, width)
pixel_array = numpy.zeros((height, width, 3), dtype=int)
for ii in [0, 1, 2]:
# opencv 颜色排序为GBR
pixel_array[:, :, 2 - ii] = pixel_array_t[:, :, ii]
else:
# 结果矩阵
pixel_array = numpy.zeros((height, width, 3), dtype=int) + 65536
# 将图片生成在内存中,然后直接返回response
im_data = self.create_by_opencv(image_type, pixel_array, quality)
return Response(im_data, mimetype=image_type.lower())
except Exception as e:
print(traceback.format_exc())
result["state"] = -1
result["message"] = e.__str__()
return result
def cache_data(self):
from app import GLOBAL_DIC
# 缓存zookeeper
zoo = GLOBAL_DIC.get("zookeeper")
if zoo is None:
zoo: KazooClient = KazooClient(hosts=configure.zookeeper, timeout=100)
zoo.start()
GLOBAL_DIC["zookeeper"] = zoo
else:
if not zoo.connected:
zoo.start()
# 缓存数据服务器
servers = GLOBAL_DIC.get("servers")
if servers is None:
servers = zoo.get_children("/rpc")
servers.append("本地服务器")
GLOBAL_DIC["servers"] = servers
GLOBAL_DIC["servers_updatetime"] = time.time()
else:
servers = GLOBAL_DIC.get("servers")
# 更新缓存
if time.time() - GLOBAL_DIC["servers_updatetime"] > 10:
servers = zoo.get_children("/rpc")
servers.append("本地服务器")
GLOBAL_DIC["servers"] = servers
GLOBAL_DIC["servers_updatetime"] = time.time()
# 缓存服务信息
image_service_info = GLOBAL_DIC.get(self.guid)
if image_service_info is None or time.time() - GLOBAL_DIC.get("service_updatetime") > 20:
image_service: ImageService = ImageService.query.filter_by(guid=self.guid).one_or_none()
images = image_service.images.all()
scheme: TileScheme = TileScheme.query.filter_by(guid=image_service.scheme_guid).one_or_none()
GLOBAL_DIC[self.guid] = {"service": image_service, "images": images, "scheme": json.loads(scheme.parameter)}
GLOBAL_DIC["service_updatetime"] = time.time()
image_service_info = GLOBAL_DIC[self.guid]
else:
image_service_info = GLOBAL_DIC[self.guid]
return image_service_info,zoo,servers
def determine_level(self, xysize, origin_extent, extent, max_level):
'''
根据范围判断调用金字塔的哪一层
:param xysize:
:param origin_extent:
:param extent:
:param max_level:
:return:
'''
x = xysize[0]
y = xysize[1]
level = -1
pixel = x * y * (((extent[2] - extent[0]) * (extent[3] - extent[1])) / (
(origin_extent[2] - origin_extent[0]) * (origin_extent[3] - origin_extent[1])))
while pixel > 100000 and level < max_level - 1:
level += 1
x = x / 2
y = y / 2
pixel = x * y * (((extent[2] - extent[0]) * (extent[3] - extent[1])) / (
(origin_extent[2] - origin_extent[0]) * (origin_extent[3] - origin_extent[1])))
return level
def create_by_opencv(self, image_type, pixel_array, quality):
if image_type.__eq__("image/jpeg") or image_type.__eq__("image/jpg"):
r, buf = cv2.imencode(".jpg", pixel_array, [cv2.IMWRITE_JPEG_QUALITY, quality])
# r, buf = cv2.imencode(".jpg", pixel_array)
image_out = buf.tobytes()
else:
height, width = pixel_array[:, :, 0].shape
four = numpy.zeros((height, width), dtype=int) + 255
four[pixel_array[:, :, 0] == 65536] = 0
r, buf = cv2.imencode(".png", numpy.dstack((pixel_array, four)))
image_out = buf.tobytes()
return image_out
def get_data(self,image_server, image, extent, bands, height, width):
if image_server.__eq__("本地服务器"):
data = self.get_local_wms_data2(image, extent, bands, height, width)
elif image_server.__eq__("None"):
data = numpy.zeros((height, width, 3), dtype=int) + 65536
else:
data = self.get_remote_wms_data(image_server,image, extent, bands, height, width)
return data
def get_remote_wms_data(self, image_server,image, extent, bands, height, width):
'''
通过RPC获取远程数据
:param image:
:param extent:
:param bands:
:return:
'''
#需要做thrift连接的缓存,连接池
thrift_connect = ThriftConnect(image_server)
image_extent = image.extent
data = thrift_connect.client.getData(image.path, extent, json.loads(image_extent), bands, width, height)
thrift_connect.close()
data = gzip.decompress(data)
data = numpy.frombuffer(data, dtype='int64')
data = data.reshape((height, width, 3))
return data
def get_remote_wms_data_cpp(self, image_server,image, extent, bands, height, width):
'''
通过RPC获取远程数据
:param image:
:param extent:
:param bands:
:return:
'''
#需要做thrift连接的缓存,连接池
thrift_connect = ThriftConnect(image_server)
image_extent = image.extent
data = thrift_connect.client.getData(image.path, extent, json.loads(image_extent), bands, width, height)
thrift_connect.close()
return data
def get_remote_wms_data_client(self,image_server,image, extent, bands, height, width):
'''
通过RPC获取远程数据
:param image:
:param extent:
:param bands:
:return:
'''
from app import GLOBAL_DIC
# 缓存thrift_pool
thrift_pool = GLOBAL_DIC.get(image_server)
if thrift_pool is None:
thrift_pool = ThriftPool(image_server)
GLOBAL_DIC["image_server"] = thrift_pool
image_extent = image.extent
client,transport = thrift_pool.get_client()
transport.open()
data = client.getData(image.path, extent, json.loads(image_extent), bands, width, height)
transport.close()
data = gzip.decompress(data)
data = numpy.frombuffer(data, dtype='int64')
data = data.reshape((height, width, 3))
return data
# def get_remote_wms_data_c(self, image_server,image, extent, bands, height, width):
# '''
# 通过RPC获取远程数据
# :param image:
# :param extent:
# :param bands:
# :return:
# '''
#
# #需要做thrift连接的缓存,连接池
# thrift_connect = ThriftConnect_C(image_server)
# image_extent = image.extent
#
# data = thrift_connect.client.getData(image.path, extent, json.loads(image_extent), bands, width, height)
#
# thrift_connect.close()
#
# data = gzip.decompress(data)
# data = numpy.frombuffer(data, dtype='int64')
#
#
# data = data.reshape((height, width, 3))
#
# return data
def get_local_wms_data(self, image, extent, bands, height, width):
'''
获取本地数据
:param image:
:param extent:
:param bands:
:return:
'''
pixel_array = numpy.zeros((height, width, 3), dtype=int)
ceng = 0
img: Dataset = gdal.Open(image.path, 0)
for band in bands:
# 自决定金字塔等级
xysize = [img.RasterXSize, img.RasterYSize]
origin_extent = json.loads(image.extent)
band_data: Band = img.GetRasterBand(band)
max_level = band_data.GetOverviewCount()
# 超出空间范围
if extent[2] < origin_extent[0] or extent[0] > origin_extent[2] or extent[1] > origin_extent[3] or extent[3] < origin_extent[1]:
empty = numpy.zeros((height, width), dtype=int) + 65536
# 空间范围相交
else:
image_level = self.determine_level(xysize, origin_extent, extent, max_level)
if image_level == -1:
overview = band_data
else:
try:
overview: Band = band_data.GetOverview(image_level)
except:
raise Exception("该影像不存在该级别的金字塔数据!")
ox = overview.XSize
oy = overview.YSize
# 网格大小
grid_x = (origin_extent[2] - origin_extent[0]) / (ox * 1.0)
grid_y = (origin_extent[3] - origin_extent[1]) / (oy * 1.0)
# 完全在影像范围内
if extent[0] > origin_extent[0] and extent[1] > origin_extent[1] and extent[2] < \
origin_extent[2] and extent[3] < origin_extent[3]:
# 网格偏移量
off_x = math.floor((extent[0] - origin_extent[0]) / grid_x)
off_y = math.floor((origin_extent[3] - extent[3]) / grid_y)
# 截取后网格个数
x_g = math.ceil((extent[2] - extent[0]) / grid_x)
y_g = math.ceil((extent[3] - extent[1]) / grid_y)
empty = overview.ReadAsArray(off_x, off_y, x_g, y_g, width, height)
# 部分相交
else:
inter_extent = [0, 0, 0, 0]
inter_extent[0] = origin_extent[0] if origin_extent[0] > extent[0] else extent[0]
inter_extent[1] = origin_extent[1] if origin_extent[1] > extent[1] else extent[1]
inter_extent[2] = origin_extent[2] if origin_extent[2] < extent[2] else extent[2]
inter_extent[3] = origin_extent[3] if origin_extent[3] < extent[3] else extent[3]
# 网格偏移量
off_x = math.floor((inter_extent[0] - origin_extent[0]) / grid_x)
off_y = math.floor((origin_extent[3] - inter_extent[3]) / grid_y)
# 截取后网格个数
x_g = math.floor((inter_extent[2] - inter_extent[0]) / grid_x)
y_g = math.floor((inter_extent[3] - inter_extent[1]) / grid_y)
# 相对于出图的偏移量
# 出图的网格大小
out_grid_x = (extent[2] - extent[0]) / (width * 1.0)
out_grid_y = (extent[3] - extent[1]) / (height * 1.0)
out_off_x = int(math.ceil((inter_extent[0] - extent[0]) / out_grid_x))
out_off_y = int(math.ceil((extent[3] - inter_extent[3]) / out_grid_y))
out_x_g = int(math.floor((inter_extent[2] - inter_extent[0]) / out_grid_x))
out_y_g = int(math.floor((inter_extent[3] - inter_extent[1]) / out_grid_y))
# 相交部分在出图的哪个位置
overview_raster: ndarray = overview.ReadAsArray(off_x, off_y, x_g, y_g, out_x_g,
out_y_g)
dat = numpy.zeros((height, width), dtype=int) + 65536
dat[out_off_y:out_off_y + out_y_g, out_off_x:out_off_x + out_x_g] = overview_raster
empty = dat
pixel_array[:, :, ceng] = empty
ceng += 1
return pixel_array
def get_local_wms_data2(self, image, extent, bands, height, width):
'''
获取本地数据
:param image:
:param extent:
:param bands:
:return:
'''
pixel_array = numpy.zeros((height, width, 3), dtype=int)
ceng = 0
img: Dataset = gdal.Open(image.path, 0)
origin_extent = json.loads(image.extent)
# 超出空间范围
if extent[2] < origin_extent[0] or extent[0] > origin_extent[2] or extent[1] > origin_extent[3] or extent[
3] < origin_extent[1]:
empty = numpy.zeros((height, width,3), dtype=int) + 65536
# 空间范围相交
else:
ox = img.RasterXSize
oy = img.RasterYSize
# 网格大小
grid_x = (origin_extent[2] - origin_extent[0]) / (ox * 1.0)
grid_y = (origin_extent[3] - origin_extent[1]) / (oy * 1.0)
# 完全在影像范围内
if extent[0] > origin_extent[0] and extent[1] > origin_extent[1] and extent[2] < \
origin_extent[2] and extent[3] < origin_extent[3]:
# 网格偏移量
off_x = math.floor((extent[0] - origin_extent[0]) / grid_x)
off_y = math.floor((origin_extent[3] - extent[3]) / grid_y)
# 截取后网格个数
x_g = math.ceil((extent[2] - extent[0]) / grid_x)
y_g = math.ceil((extent[3] - extent[1]) / grid_y)
empty = img.ReadRaster(off_x, off_y, x_g, y_g,256,256,band_list=[1,2,3])
img.ReadAsArray()
# 部分相交
else:
inter_extent = [0, 0, 0, 0]
inter_extent[0] = origin_extent[0] if origin_extent[0] > extent[0] else extent[0]
inter_extent[1] = origin_extent[1] if origin_extent[1] > extent[1] else extent[1]
inter_extent[2] = origin_extent[2] if origin_extent[2] < extent[2] else extent[2]
inter_extent[3] = origin_extent[3] if origin_extent[3] < extent[3] else extent[3]
# 网格偏移量
off_x = math.floor((inter_extent[0] - origin_extent[0]) / grid_x)
off_y = math.floor((origin_extent[3] - inter_extent[3]) / grid_y)
# 截取后网格个数
x_g = math.floor((inter_extent[2] - inter_extent[0]) / grid_x)
y_g = math.floor((inter_extent[3] - inter_extent[1]) / grid_y)
# 相对于出图的偏移量
# 出图的网格大小
out_grid_x = (extent[2] - extent[0]) / (width * 1.0)
out_grid_y = (extent[3] - extent[1]) / (height * 1.0)
out_off_x = int(math.ceil((inter_extent[0] - extent[0]) / out_grid_x))
out_off_y = int(math.ceil((extent[3] - inter_extent[3]) / out_grid_y))
out_x_g = int(math.floor((inter_extent[2] - inter_extent[0]) / out_grid_x))
out_y_g = int(math.floor((inter_extent[3] - inter_extent[1]) / out_grid_y))
# 相交部分在出图的哪个位置
overview_raster: ndarray = img.ReadAsArray(off_x, off_y, x_g, y_g, out_x_g,
out_y_g)
dat = numpy.zeros((height, width,3), dtype=int) + 65536
dat[out_off_y:out_off_y + out_y_g, out_off_x:out_off_x + out_x_g] = overview_raster
empty = dat
return empty
def determin_intersect(self, extent1, extent2):
if extent2[2] < extent1[0] or extent2[0] > extent1[2] or extent2[1] > extent1[
3] or extent2[3] < extent1[1]:
return False
else:
return True
api_doc = {
"tags": ["影像接口"],
"parameters": [
{"name": "guid",
"in": "formData",
"type": "string"},
{"name": "tilematrix",
"in": "formData",
"type": "string"},
{"name": "tilerow",
"in": "formData",
"type": "string"},
{"name": "tilecol",
"in": "formData",
"type": "string"},
{"name": "format",
"in": "formData",
"type": "string"},
{"name": "quality",
"in": "formData",
"type": "string"}
],
"responses": {
200: {
"schema": {
"properties": {
}
}
}
}
}
class MyThread(Thread):
def __init__(self,func,args=()):
super(MyThread,self).__init__()
self.func = func
self.args = args
def run(self):
self.result = self.func(*self.args)
def get_result(self):
try:
return self.result
except Exception:
return None