image_tile.py
7.3 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
# coding=utf-8
#author: 4N
#createtime: 2021/3/24
#email: nheweijun@sina.com
from app.util import *
import traceback
from osgeo import gdal
from osgeo.gdal import *
from numpy import ndarray
import numpy
from flask import Response
from .util.ImageData import ImageData
import time
import cv2
from app.modules.service.image.models import ImageService,Image
from app.models import db,TileScheme
from app.util.component.ApiTemplate import ApiTemplate
from app.util.component.SliceScheme import SliceScheme
from app.util.component.ParameterUtil import ParameterUtil
import json
from kazoo.client import KazooClient
from threading import Thread
from app.modules.service.image.util.ThriftConnect import ThriftConnect,ThriftPool
import gzip
import random
import copy
from .util.Opencv import Opencv
from .util.Cache import Cache
from .util.MyThread import MyThread
class Api(ApiTemplate):
api_name = "切片"
def __init__(self,guid,level, row, col):
super().__init__()
self.guid = guid
self.level = level
self.row = row
self.col = col
def process(self):
result = {}
parameter: dict = self.para
try:
if parameter.get("guid"):
self.guid = parameter.get("guid")
image_service_info, zoo, servers = Cache.cache_data(self.guid)
# bands = [1, 2, 3]
# 转换参数
parameter = ParameterUtil.to_lower(parameter)
if parameter.get("tilematrix"):
if parameter.get("tilematrix").__contains__(":"):
self.level = int(parameter.get("tilematrix").split(":")[-1])
else:
self.level = int(parameter.get("tilematrix"))
if parameter.get("tilerow"):
self.row = int(parameter.get("tilerow"))
if parameter.get("tilecol"):
self.col = int(parameter.get("tilecol"))
image_type = parameter.get("format") if parameter.get("format") else "image/png"
quality = int(parameter.get("quality")) if parameter.get("quality") else 30
slice_para = image_service_info["scheme"]
extent = SliceScheme.get_polygon(slice_para, self.level, self.row, self.col)
height, width = 256,256
re = parameter.get("request")
if re and re.__eq__("GetCapabilities"):
return self.get_capabilities(image_service_info["service"])
# 多线程获取分布式数据
intersect_image = [im for im in image_service_info["images"] if self.determin_intersect(json.loads(im.extent),extent)]
if len(intersect_image) > 1:
# 结果矩阵
pixel_array = numpy.zeros((height, width, 3), dtype=int) + 65536
thread_list = []
for image in intersect_image:
# 该影像的服务器,随机选取一个
image_servers = image.server.split(",")
image_servers = [ser for ser in image_servers if ser in servers]
if len(image_servers)>0:
indx = int(random.random() * len(image_servers))
image_server = image_servers[indx]
else:
image_server = "None"
bands = json.loads(image.band_view)
image_data = ImageData(image_server,image)
thread: MyThread = MyThread(image_data.get_data,args=(extent, bands, height, width))
thread.start()
thread_list.append(thread)
for thread in thread_list:
thread.join()
data = thread.get_result()
# 掩膜在中央接口生成,合图
mask = numpy.zeros((height, width, 3), dtype=int)
mask_data = numpy.zeros((height, width, 3), dtype=int)
mask[data == 65536] = 1
mask[data != 65536] = 0
mask_data[data == 65536] = 0
mask_data[data != 65536] = 1
# # 掩膜计算
pixel_array = pixel_array * mask + data * mask_data
# opencv 颜色排序为GBR
d1 = copy.copy(pixel_array[:,:,0])
pixel_array[:, :, 0] = pixel_array[:,:,2]
pixel_array[:, :, 2] = d1
elif len(intersect_image) == 1:
# 该影像的服务器,随机选取一个
image = intersect_image[0]
image_servers = image.server.split(",")
#判断可用服务器
image_servers = [ser for ser in image_servers if ser in servers]
if len(image_servers) > 0:
indx = int(random.random() * len(image_servers))
image_server = image_servers[indx]
else:
image_server = "None"
# image_server = image_servers[0]
bands = json.loads(image.band_view)
image_data = ImageData(image_server, image)
pixel_array_t: numpy.ndarray = image_data.get_data(extent, bands, height, width)
pixel_array = numpy.zeros((height, width, 3), dtype=int)
for ii in [0, 1, 2]:
# opencv 颜色排序为GBR
pixel_array[:, :, 2 - ii] = pixel_array_t[:, :, ii]
else:
# 结果矩阵
pixel_array = numpy.zeros((height, width, 3), dtype=int) + 65536
# 将图片生成在内存中,然后直接返回response
im_data = Opencv.create_image(image_type, pixel_array, quality)
return Response(im_data, mimetype=image_type.lower())
except Exception as e:
print(traceback.format_exc())
result["state"] = -1
result["message"] = e.__str__()
return result
def get_capabilities(self):
return {}
def determin_intersect(self, extent1, extent2):
if extent2[2] < extent1[0] or extent2[0] > extent1[2] or extent2[1] > extent1[
3] or extent2[3] < extent1[1]:
return False
else:
return True
api_doc = {
"tags": ["影像接口"],
"parameters": [
{"name": "guid",
"in": "formData",
"type": "string"},
{"name": "tilematrix",
"in": "formData",
"type": "string"},
{"name": "tilerow",
"in": "formData",
"type": "string"},
{"name": "tilecol",
"in": "formData",
"type": "string"},
{"name": "format",
"in": "formData",
"type": "string"},
{"name": "quality",
"in": "formData",
"type": "string"}
],
"responses": {
200: {
"schema": {
"properties": {
}
}
}
}
}