image_tile.py
13.1 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
# coding=utf-8
#author: 4N
#createtime: 2021/3/24
#email: nheweijun@sina.com
from app.util import *
import traceback
from osgeo import gdal
from osgeo.gdal import *
from numpy import ndarray
import numpy
from flask import Response
import io
import os
from PIL import Image
import time
import cv2
from app.modules.image.models import ImageService,Image
from app.models import db
from app.util.component.ApiTemplate import ApiTemplate
import uuid
from app.util.component.SliceScheme import SliceScheme
from app.util.component.FileProcess import FileProcess
from app.util.component.ParameterUtil import ParameterUtil
from app.util.component.GeometryAdapter import GeometryAdapter
import os
import json
from kazoo.client import KazooClient
from app import GLOBAL_DIC
from threading import Thread
from thrift.transport import TSocket
from thrift.transport import TTransport
from thrift.protocol import TBinaryProtocol
from .ImageDataService import ImageDataService
from flask import current_app
import gzip
class Api(ApiTemplate):
api_name = "切片"
def __init__(self,guid,level, row, col):
super().__init__()
self.guid = guid
self.level = level
self.row = row
self.col = col
def process(self):
result = {}
parameter: dict = self.para
try:
if parameter.get("guid"):
self.guid = parameter.get("guid")
image_service = ImageService.query.filter_by(guid = self.guid).one_or_none()
images = image_service.images.all()
zoo = GLOBAL_DIC.get("zookeeper")
if zoo is None:
zoo :KazooClient = KazooClient(hosts=configure.zookeeper, timeout=100)
zoo.start()
GLOBAL_DIC["zookeeper"] = zoo
else :
if not zoo.connected:
zoo.start()
bands = [1, 2, 3]
# 转换参数
parameter = ParameterUtil.to_lower(parameter)
if parameter.get("tilematrix"):
if parameter.get("tilematrix").__contains__(":"):
self.level = int(parameter.get("tilematrix").split(":")[-1])
else:
self.level = int(parameter.get("tilematrix"))
if parameter.get("tilerow"):
self.row = int(parameter.get("tilerow"))
if parameter.get("tilecol"):
self.col = int(parameter.get("tilecol"))
image_type = parameter.get("format") if parameter.get("format") else "image/png"
quality = int(parameter.get("quality")) if parameter.get("quality") else 30
slice_para = json.loads(image_service.slice_scheme)
extent = SliceScheme.get_polygon(slice_para, self.level, self.row, self.col)
# 结果矩阵
empty_list = [numpy.zeros((256, 256), dtype=int) + 65536,
numpy.zeros((256, 256), dtype=int) + 65536,
numpy.zeros((256, 256), dtype=int) + 65536]
# 多线程获取分布式数据
intersect_image = [im for im in images if self.determin_intersect(json.loads(im.extent),extent)]
pixel_array = numpy.zeros((256, 256,3), dtype=int)
for image in intersect_image:
if image.host.__eq__("本地服务器"):
pixel_array = numpy.zeros((256, 256, 3), dtype=int)
ceng = 0
img: Dataset = gdal.Open(image.path, 0)
t1 = time.time()
for band in bands:
# 自决定金字塔等级
xysize = [img.RasterXSize, img.RasterYSize]
origin_extent = image.extent
band_data: Band = img.GetRasterBand(band)
max_level = band_data.GetOverviewCount()
# 超出空间范围
if extent[2] < origin_extent[0] or extent[0] > origin_extent[2] or extent[1] > origin_extent[
3] or extent[3] < origin_extent[1]:
empty = numpy.zeros((256, 256), dtype=int) + 65536
# 空间范围相交
else:
image_level = self.determine_level(xysize, origin_extent, extent, max_level)
if image_level == -1:
overview = band_data
else:
try:
overview: Band = band_data.GetOverview(image_level)
except:
raise Exception("该影像不存在该级别的金字塔数据!")
ox = overview.XSize
oy = overview.YSize
# 网格大小
grid_x = (origin_extent[2] - origin_extent[0]) / (ox * 1.0)
grid_y = (origin_extent[3] - origin_extent[1]) / (oy * 1.0)
# 完全在影像范围内
if extent[0] > origin_extent[0] and extent[1] > origin_extent[1] and extent[2] < \
origin_extent[2] and extent[3] < origin_extent[3]:
# 网格偏移量
off_x = math.floor((extent[0] - origin_extent[0]) / grid_x)
off_y = math.floor((origin_extent[3] - extent[3]) / grid_y)
# 截取后网格个数
x_g = math.ceil((extent[2] - extent[0]) / grid_x)
y_g = math.ceil((extent[3] - extent[1]) / grid_y)
empty = overview.ReadAsArray(off_x, off_y, x_g, y_g, 256, 256)
# 部分相交
else:
inter_extent = [0, 0, 0, 0]
inter_extent[0] = origin_extent[0] if origin_extent[0] > extent[0] else extent[0]
inter_extent[1] = origin_extent[1] if origin_extent[1] > extent[1] else extent[1]
inter_extent[2] = origin_extent[2] if origin_extent[2] < extent[2] else extent[2]
inter_extent[3] = origin_extent[3] if origin_extent[3] < extent[3] else extent[3]
# 网格偏移量
off_x = math.floor((inter_extent[0] - origin_extent[0]) / grid_x)
off_y = math.floor((origin_extent[3] - inter_extent[3]) / grid_y)
# 截取后网格个数
x_g = math.floor((inter_extent[2] - inter_extent[0]) / grid_x)
y_g = math.floor((inter_extent[3] - inter_extent[1]) / grid_y)
# 相对于出图的偏移量
# 出图的网格大小
out_grid_x = (extent[2] - extent[0]) / (256 * 1.0)
out_grid_y = (extent[3] - extent[1]) / (256 * 1.0)
out_off_x = int(math.ceil((inter_extent[0] - extent[0]) / out_grid_x))
out_off_y = int(math.ceil((extent[3] - inter_extent[3]) / out_grid_y))
out_x_g = int(math.floor((inter_extent[2] - inter_extent[0]) / out_grid_x))
out_y_g = int(math.floor((inter_extent[3] - inter_extent[1]) / out_grid_y))
# 相交部分在出图的哪个位置
overview_raster: ndarray = overview.ReadAsArray(off_x, off_y, x_g, y_g, out_x_g,
out_y_g)
dat = numpy.zeros((256, 256), dtype=int) + 65536
dat[out_off_y:out_off_y + out_y_g, out_off_x:out_off_x + out_x_g] = overview_raster
empty = dat
pixel_array[:, :, ceng] = empty
ceng += 1
data = pixel_array
else:
ser = "{}:{}".format(image.host,image.port)
if zoo.exists("/rpc/{}".format(ser)):
transport = TSocket.TSocket(image.host, image.port)
transport = TTransport.TBufferedTransport(transport)
protocol = TBinaryProtocol.TBinaryProtocol(transport)
client = ImageDataService.Client(protocol)
transport.open()
t1 = time.time()
data = client.getData(image.path, extent, json.loads(image.extent), bands)
transport.close()
current_app.logger.info("time {}".format(time.time()-t1))
data = gzip.decompress(data)
data = numpy.frombuffer(data, dtype=int)
data= data.reshape((256, 256, 3))
else:
data = numpy.zeros((256, 256, 3), dtype=int) + 65536
# 掩膜在中央接口生成
mask = numpy.zeros((256, 256), dtype=int)
mask2 = numpy.zeros((256, 256), dtype=int)
jizhun = data[:, :, 0]
mask[jizhun == 65536] = 1
mask[jizhun != 65536] = 0
mask2[jizhun == 65536] = 0
mask2[jizhun != 65536] = 1
# 掩膜计算
for i, d in enumerate(empty_list):
empty_list[i] = empty_list[i] * mask + data[:, :, i] * mask2
for ii in [0, 1, 2]:
# opencv 颜色排序为GBR
pixel_array[:, :, 2 - ii] = empty_list[ii]
#将图片生成在内存中,然后直接返回response
im_data = self.create_by_opencv(image_type, pixel_array, quality)
return Response(im_data, mimetype=image_type.lower())
except Exception as e:
print(traceback.format_exc())
result["state"] = -1
result["message"] = e.__str__()
return result
def determine_level(self,xysize,origin_extent,extent,max_level):
'''
根据范围判断调用金字塔的哪一层
:param xysize:
:param origin_extent:
:param extent:
:param max_level:
:return:
'''
x = xysize[0]
y = xysize[1]
level = -1
pixel = x*y * (((extent[2]-extent[0])*(extent[3]-extent[1]))/((origin_extent[2]-origin_extent[0])*(origin_extent[3]-origin_extent[1])))
while pixel>100000 and level<max_level-1:
level+=1
x=x/2
y=y/2
pixel = x * y * (((extent[2] - extent[0]) * (extent[3] - extent[1])) / (
(origin_extent[2] - origin_extent[0]) * (origin_extent[3] - origin_extent[1])))
return level
def create_by_opencv(self,image_type, pixel_array, quality):
if image_type.__eq__("image/jpeg") or image_type.__eq__("image/jpg"):
r, buf = cv2.imencode(".jpg", pixel_array, [cv2.IMWRITE_JPEG_QUALITY, quality])
image_out = buf.tobytes()
else:
four = numpy.zeros((256, 256), dtype=int) + 255
four[pixel_array[:, :, 0] == 65536] = 0
r, buf = cv2.imencode(".png", numpy.dstack((pixel_array, four)))
image_out = buf.tobytes()
return image_out
def get_data(self,image,extent,bands):
'''
通过RPC获取远程数据
:param image:
:param extent:
:param bands:
:return:
'''
transport = TSocket.TSocket(image.host, image.port)
transport = TTransport.TBufferedTransport(transport)
protocol = TBinaryProtocol.TBinaryProtocol(transport)
client = ImageDataService.Client(protocol)
transport.open()
data = client.getData(image.path,extent,json.loads(image.extent), bands)
transport.close()
return numpy.array(json.loads(data))
def determin_intersect(self,extent1,extent2):
g1 = GeometryAdapter.envelop_2_polygon(extent1)
g2 = GeometryAdapter.envelop_2_polygon(extent2)
return g1.Intersect(g2)
class MyThread(Thread):
def __init__(self,func,args=()):
super(MyThread,self).__init__()
self.func = func
self.args = args
def run(self):
self.result = self.func(*self.args)
def get_result(self):
try:
return self.result
except Exception:
return None
api_doc={
"tags":["影像接口"],
"parameters":[
],
"responses":{
200:{
"schema":{
"properties":{
}
}
}
}
}