image_tile.py 15.1 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406
# coding=utf-8
#author:        4N
#createtime:    2021/3/24
#email:         nheweijun@sina.com

from app.util import *
import traceback
from osgeo import gdal
from osgeo.gdal import *
from numpy import ndarray
import numpy
from flask import Response
import io
import os
from PIL import Image

import time
import cv2
from app.modules.service.image.models import ImageService,Image
from app.models import db,TileScheme
from app.util.component.ApiTemplate import ApiTemplate
import uuid
from app.util.component.SliceScheme import SliceScheme
from app.util.component.FileProcess import FileProcess
from app.util.component.ParameterUtil import ParameterUtil
from app.util.component.GeometryAdapter import GeometryAdapter
import os
import json
from kazoo.client import KazooClient

from threading import Thread

from app.modules.service.image.util.ThriftConnect import ThriftConnect
from flask import current_app
import gzip
import random
class Api(ApiTemplate):

    api_name = "切片"

    def __init__(self,guid,level, row, col):
        super().__init__()
        self.guid = guid
        self.level = level
        self.row = row
        self.col = col

    def process(self):
        from app import GLOBAL_DIC
        result = {}
        parameter: dict = self.para

        try:
            if parameter.get("guid"):
                self.guid = parameter.get("guid")

            #缓存服务信息
            image_service_info = GLOBAL_DIC.get(self.guid)
            if image_service_info is None:
                image_service:ImageService = ImageService.query.filter_by(guid = self.guid).one_or_none()
                images = image_service.images.all()
                scheme:TileScheme = TileScheme.query.filter_by(guid=image_service.scheme_guid).one_or_none()
                GLOBAL_DIC[self.guid] = {"service":image_service,"images":images,"scheme":json.loads(scheme.parameter)}
                image_service_info = GLOBAL_DIC[self.guid]
            else:
                image_service_info = GLOBAL_DIC[self.guid]

            zoo = GLOBAL_DIC.get("zookeeper")
            if zoo is None:
                zoo :KazooClient = KazooClient(hosts=configure.zookeeper, timeout=100)
                zoo.start()
                GLOBAL_DIC["zookeeper"] = zoo
            else :
                if not zoo.connected:
                    zoo.start()

            bands = [1, 2, 3]


            # 转换参数
            parameter = ParameterUtil.to_lower(parameter)


            if parameter.get("tilematrix"):
                if parameter.get("tilematrix").__contains__(":"):
                    self.level = int(parameter.get("tilematrix").split(":")[-1])
                else:
                    self.level = int(parameter.get("tilematrix"))
            if parameter.get("tilerow"):
                self.row = int(parameter.get("tilerow"))
            if parameter.get("tilecol"):
                self.col = int(parameter.get("tilecol"))

            image_type = parameter.get("format") if parameter.get("format") else "image/png"
            quality = int(parameter.get("quality")) if parameter.get("quality") else 30
            slice_para = image_service_info["scheme"]
            extent = SliceScheme.get_polygon(slice_para, self.level, self.row, self.col)


            height, width = 256,256

            # 多线程获取分布式数据

            intersect_image = [im for im in image_service_info["images"] if self.determin_intersect(json.loads(im.extent),extent)]

            if len(intersect_image) > 1:

                # 结果矩阵
                empty_list = [numpy.zeros((height, width), dtype=int) + 65536,
                              numpy.zeros((height, width), dtype=int) + 65536,
                              numpy.zeros((height, width), dtype=int) + 65536]

                pixel_array = numpy.zeros((height, width, 3), dtype=int)
                thread_list = []

                for image in intersect_image:
                    # 该影像的服务器,随机选取一个
                    image_servers = image.server.split(",")
                    indx = int(random.random() * len(image_servers))
                    image_server = image_servers[indx]
                    thread: MyThread = MyThread(self.get_data,
                                                args=(zoo, image_server, image, extent, bands, height, width))
                    thread.start()
                    thread_list.append(thread)

                for thread in thread_list:
                    thread.join()
                    data = thread.get_result()

                    # 掩膜在中央接口生成,合图
                    mask = numpy.zeros((height, width), dtype=int)
                    mask2 = numpy.zeros((height, width), dtype=int)
                    jizhun = data[:, :, 0]
                    mask[jizhun == 65536] = 1
                    mask[jizhun != 65536] = 0
                    mask2[jizhun == 65536] = 0
                    mask2[jizhun != 65536] = 1
                    # 掩膜计算
                    for i, d in enumerate(empty_list):
                        empty_list[i] = empty_list[i] * mask + data[:, :, i] * mask2

                for ii in [0, 1, 2]:
                    # opencv 颜色排序为GBR
                    pixel_array[:, :, 2 - ii] = empty_list[ii]


            elif len(intersect_image) == 1:
                # 该影像的服务器,随机选取一个
                image = intersect_image[0]
                image_servers = image.server.split(",")
                indx = int(random.random() * len(image_servers))

                image_server = image_servers[indx]

                pixel_array_t = self.get_data(zoo, image_server, image, extent, bands, height, width)
                pixel_array = numpy.zeros((height, width, 3), dtype=int)
                for ii in [0, 1, 2]:
                    # opencv 颜色排序为GBR
                    pixel_array[:, :, 2 - ii] = pixel_array_t[:, :, ii]


            else:
                # 结果矩阵
                pixel_array = numpy.zeros((height, width, 3), dtype=int) + 65536

            # 将图片生成在内存中,然后直接返回response
            im_data = self.create_by_opencv(image_type, pixel_array, quality)
            return Response(im_data, mimetype=image_type.lower())

        except Exception as e:
            print(traceback.format_exc())
            result["state"] = -1
            result["message"] = e.__str__()
            return result

    def determine_level(self, xysize, origin_extent, extent, max_level):
        '''
        根据范围判断调用金字塔的哪一层
        :param xysize:
        :param origin_extent:
        :param extent:
        :param max_level:
        :return:
        '''
        x = xysize[0]
        y = xysize[1]
        level = -1
        pixel = x * y * (((extent[2] - extent[0]) * (extent[3] - extent[1])) / (
                (origin_extent[2] - origin_extent[0]) * (origin_extent[3] - origin_extent[1])))
        while pixel > 100000 and level < max_level - 1:
            level += 1
            x = x / 2
            y = y / 2
            pixel = x * y * (((extent[2] - extent[0]) * (extent[3] - extent[1])) / (
                    (origin_extent[2] - origin_extent[0]) * (origin_extent[3] - origin_extent[1])))
        return level

    def create_by_opencv(self, image_type, pixel_array, quality):

        if image_type.__eq__("image/jpeg") or image_type.__eq__("image/jpg"):
            r, buf = cv2.imencode(".jpg", pixel_array, [cv2.IMWRITE_JPEG_QUALITY, quality])
            image_out = buf.tobytes()
        else:
            height, width = pixel_array[:, :, 0].shape
            four = numpy.zeros((height, width), dtype=int) + 255
            four[pixel_array[:, :, 0] == 65536] = 0
            r, buf = cv2.imencode(".png", numpy.dstack((pixel_array, four)))
            image_out = buf.tobytes()
        return image_out

    def get_data(self, zoo, image_server, image, extent, bands, height, width):

        if image_server.__eq__("本地服务器"):
            data = self.get_local_wms_data(image, extent, bands, height, width)
        else:
            ser = image_server
            if zoo.exists("/rpc/{}".format(ser)):
                data = self.get_remote_wms_data(ser,image, extent, bands, height, width)
            else:
                data = numpy.zeros((height, width, 3), dtype=int) + 65536

        return data

    def get_remote_wms_data(self, image_server,image, extent, bands, height, width):
        '''
        通过RPC获取远程数据
        :param image:
        :param extent:
        :param bands:
        :return:
        '''


        #需要做thrift连接的缓存,连接池

        thrift_connect = ThriftConnect(image_server)
        t1 = time.time()
        image_extent = image.extent

        data = thrift_connect.client.getData(image.path, extent, json.loads(image_extent), bands, width, height)

        thrift_connect.close()

        # current_app.logger.info("time {}".format(time.time() - t1))
        data = gzip.decompress(data)
        data = numpy.frombuffer(data, dtype='int64')
        data = data.reshape((height, width, 3))

        return data

    def get_local_wms_data(self, image, extent, bands, height, width):
        '''
        获取本地数据
        :param image:
        :param extent:
        :param bands:
        :return:
        '''
        pixel_array = numpy.zeros((height, width, 3), dtype=int)
        ceng = 0
        img: Dataset = gdal.Open(image.path, 0)
        t1 = time.time()
        for band in bands:

            # 自决定金字塔等级
            xysize = [img.RasterXSize, img.RasterYSize]

            origin_extent = image.extent
            band_data: Band = img.GetRasterBand(band)

            max_level = band_data.GetOverviewCount()

            # 超出空间范围
            if extent[2] < origin_extent[0] or extent[0] > origin_extent[2] or extent[1] > origin_extent[
                3] or extent[3] < origin_extent[1]:
                empty = numpy.zeros((height, width), dtype=int) + 65536
            # 空间范围相交
            else:
                image_level = self.determine_level(xysize, origin_extent, extent, max_level)

                if image_level == -1:
                    overview = band_data
                else:
                    try:
                        overview: Band = band_data.GetOverview(image_level)
                    except:
                        raise Exception("该影像不存在该级别的金字塔数据!")
                ox = overview.XSize
                oy = overview.YSize

                # 网格大小
                grid_x = (origin_extent[2] - origin_extent[0]) / (ox * 1.0)
                grid_y = (origin_extent[3] - origin_extent[1]) / (oy * 1.0)

                # 完全在影像范围内
                if extent[0] > origin_extent[0] and extent[1] > origin_extent[1] and extent[2] < \
                        origin_extent[2] and extent[3] < origin_extent[3]:

                    # 网格偏移量
                    off_x = math.floor((extent[0] - origin_extent[0]) / grid_x)
                    off_y = math.floor((origin_extent[3] - extent[3]) / grid_y)

                    # 截取后网格个数
                    x_g = math.ceil((extent[2] - extent[0]) / grid_x)

                    y_g = math.ceil((extent[3] - extent[1]) / grid_y)

                    empty = overview.ReadAsArray(off_x, off_y, x_g, y_g, width, height)


                # 部分相交
                else:

                    inter_extent = [0, 0, 0, 0]
                    inter_extent[0] = origin_extent[0] if origin_extent[0] > extent[0] else extent[0]
                    inter_extent[1] = origin_extent[1] if origin_extent[1] > extent[1] else extent[1]
                    inter_extent[2] = origin_extent[2] if origin_extent[2] < extent[2] else extent[2]
                    inter_extent[3] = origin_extent[3] if origin_extent[3] < extent[3] else extent[3]

                    # 网格偏移量
                    off_x = math.floor((inter_extent[0] - origin_extent[0]) / grid_x)
                    off_y = math.floor((origin_extent[3] - inter_extent[3]) / grid_y)

                    # 截取后网格个数
                    x_g = math.floor((inter_extent[2] - inter_extent[0]) / grid_x)
                    y_g = math.floor((inter_extent[3] - inter_extent[1]) / grid_y)

                    # 相对于出图的偏移量

                    # 出图的网格大小
                    out_grid_x = (extent[2] - extent[0]) / (width * 1.0)
                    out_grid_y = (extent[3] - extent[1]) / (height * 1.0)

                    out_off_x = int(math.ceil((inter_extent[0] - extent[0]) / out_grid_x))
                    out_off_y = int(math.ceil((extent[3] - inter_extent[3]) / out_grid_y))

                    out_x_g = int(math.floor((inter_extent[2] - inter_extent[0]) / out_grid_x))
                    out_y_g = int(math.floor((inter_extent[3] - inter_extent[1]) / out_grid_y))

                    # 相交部分在出图的哪个位置

                    overview_raster: ndarray = overview.ReadAsArray(off_x, off_y, x_g, y_g, out_x_g,
                                                                    out_y_g)

                    dat = numpy.zeros((height, width), dtype=int) + 65536
                    dat[out_off_y:out_off_y + out_y_g, out_off_x:out_off_x + out_x_g] = overview_raster

                    empty = dat

            pixel_array[:, :, ceng] = empty
            ceng += 1
        return pixel_array

    def determin_intersect(self, extent1, extent2):
        g1 = GeometryAdapter.bbox_2_polygon(extent1)
        g2 = GeometryAdapter.bbox_2_polygon(extent2)
        return g1.Intersect(g2)

    api_doc = {
        "tags": ["影像接口"],
        "parameters": [
            {"name": "guid",
             "in": "formData",
             "type": "string"},
            {"name": "tilematrix",
             "in": "formData",
             "type": "string"},
            {"name": "tilerow",
             "in": "formData",
             "type": "string"},
            {"name": "tilecol",
             "in": "formData",
             "type": "string"},
            {"name": "format",
             "in": "formData",
             "type": "string"},
            {"name": "quality",
             "in": "formData",
             "type": "string"}

        ],
        "responses": {
            200: {
                "schema": {
                    "properties": {
                    }
                }
            }
        }
    }

class MyThread(Thread):
    def __init__(self,func,args=()):
        super(MyThread,self).__init__()
        self.func = func
        self.args = args
    def run(self):
        self.result = self.func(*self.args)
    def get_result(self):
        try:
            return self.result
        except Exception:
            return None